Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Emerg Microbes Infect ; 12(1): 2209208, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2292308

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve after its emergence. Given its importance in viral infection and vaccine development, mutations in the viral Spike gene have been studied extensively; however, the impact of mutations outside the Spike gene are poorly understood. Here, we report that a triple deletion (ΔSGF or ΔLSG) in nonstructural protein 6 (nsp6) independently acquired in Alpha and Omicron sublineages of SARS-CoV-2 augments nsp6-mediated antagonism of type-I interferon (IFN-I) signaling. Specifically, these triple deletions enhance the ability of mutant nsp6 to suppress phosphorylation of STAT1 and STAT2. A parental SARS-CoV-2 USA-WA1/2020 strain containing the nsp6 ΔSGF deletion (ΔSGF-WA1) shows reduced susceptibility to IFN-I treatment in vitro, outcompetes the parental strain in human primary airway cultures, and increases virulence in mice; however, the ΔSGF-WA1 virus is less virulent than the Alpha variant (which has the nsp6 ΔSGF deletion and additional mutations in other genes). Analyses of host responses from ΔSGF-WA1-infected mice and primary airway cultures reveal activation of pathways indicative of a cytokine storm. These results provide evidence that mutations outside the Spike protein affect virus-host interactions and may alter pathogenesis of SARS-CoV-2 variants in humans.


Subject(s)
COVID-19 , Interferon Type I , Humans , Animals , Mice , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Interferon Type I/metabolism , Mutation , Spike Glycoprotein, Coronavirus
2.
Vet Microbiol ; 279: 109666, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2287296

ABSTRACT

Porcine epidemic diarrhea (PED) caused by the porcine epidemic diarrhea virus (PEDV) has caused huge losses in the swine industry worldwide. Glucosyltransferase Rab-like GTPase activator and myotubularin domain containing 4 (GRAMD4) is a proapoptotic protein, which replaced p53 inducing mitochondrial apoptosis. However, the relationship between GRAMD4 and PEDV has not been reported. Here, we aimed to investigate the potential role of GRAMD4 during PEDV infection. In this study, we used co-immunoprecipitation (co-IP) and mass spectrometry to identify GRAMD4 interaction with PEDV non-structural protein 6 (NSP6). Immunoprecipitation and laser confocal microscopy were utilized to demonstrate that GRAMD4 interacts with NSP6. NSP6 reduces GRAMD4 production through PERK and IRE1 pathway-mediated apoptosis. We demonstrated that overexpression of GRAMD4 effectively impaired the replication of PEDV, whereas knockdown of GRAMD4 facilitated the replication of PEDV. Overexpression of GRAMD4 increased GRP78, phosphorylated PERK (p-PERK), phosphorylated IRE1(p-IRE1) levels, promoted CHOP, phosphorylated JNK (p-JNK), Bax expression, caspase 9 and caspase 3 cleavage, and inhibited Bcl-2 production. Knockdown of GRAMD4 has the opposite effect. Finally, deletion of the GRAM domain of GRAMD4 cannot cause endoplasmic reticulum stress (ER stress)-mediated apoptosis and inhibit virus replication. In conclusion, these studies revealed the mechanism by which GRAMD4 was associated with ER stress and apoptosis regulating PEDV replication. NSP6 acted as a potential down-regulator of GRAMD4 and promoted the degradation of GRAMD4. GRAMD4 played a role in facilitating apoptosis and restricting virus replication, and the GRAM domain was required. These findings provided a reference for host-PEDV interactions and offered the possibility for PEDV decontamination and prevention.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/physiology , Virus Replication , Apoptosis , Protein Serine-Threonine Kinases , Endoplasmic Reticulum Stress , Coronavirus Infections/veterinary
3.
Antiviral Res ; 213: 105590, 2023 05.
Article in English | MEDLINE | ID: covidwho-2252255

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and adapt after its emergence in late 2019. As the causative agent of the coronavirus disease 2019 (COVID-19), the replication and pathogenesis of SARS-CoV-2 have been extensively studied by the research community for vaccine and therapeutics development. Given the importance of viral spike protein in viral infection/transmission and vaccine development, the scientific community has thus far primarily focused on studying the structure, function, and evolution of the spike protein. Other viral proteins are understudied. To fill in this knowledge gap, a few recent studies have identified nonstructural protein 6 (nsp6) as a major contributor to SARS-CoV-2 replication through the formation of replication organelles, antagonism of interferon type I (IFN-I) responses, and NLRP3 inflammasome activation (a major factor of severe disease in COVID-19 patients). Here, we review the most recent progress on the multiple roles of nsp6 in modulating SARS-CoV-2 replication and pathogenesis.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Viral Proteins
4.
Front Microbiol ; 13: 1027015, 2022.
Article in English | MEDLINE | ID: covidwho-2224829

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic, induces an unbalanced immune response in the host. For instance, the production of type I interferon (IFN) and the response to it, which act as a front-line defense against virus invasion, are inhibited during SARS-CoV-2 infection. In addition, tumor necrosis factor alpha (TNF-α), a proinflammatory cytokine, is upregulated in COVID-19 patients with severe symptoms. Studies on the closely related betacoronavirus, SARS-CoV, showed that viral proteins such as Nsp1, Orf6 and nucleocapsid protein inhibit IFN-ß production and responses at multiple steps. Given the conservation of these proteins between SARS-CoV and SARS-CoV-2, it is not surprising that SARS-CoV-2 deploys similar immune evasion strategies. Here, we carried out a screen to examine the role of individual SARS-CoV-2 proteins in regulating innate immune signaling, such as the activation of transcription factors IRF3 and NF-κB and the response to type I and type II IFN. In addition to established roles of SARS-CoV-2 proteins, we report that SARS-CoV-2 proteins Nsp6 and Orf8 inhibit the type I IFN response but at different stages. Orf6 blocks the translocation of STAT1 and STAT2 into the nucleus, whereas ORF8 inhibits the pathway in the nucleus after STAT1/2 translocation. SARS-CoV-2 Orf6 also suppresses IRF3 activation and TNF-α-induced NF-κB activation.

5.
Gene ; 851: 147020, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2095373

ABSTRACT

PURPOSE: To assess, if the SARS-CoV-2 mutate in a similar pattern globally or has a specific pattern in any given population. RESULTS: We report, the insertion of TTT at 11085, which adds an extra amino acid, F to the NSP6 at amino acid position 38. The highest occurrence of TTT insertion at 11,085 position was found in UK derived samples (65.97%). The second and third highest occurrence of the mutation were found in Australia (8.3%) and USA (4.16%) derived samples, respectively. Another important discovery of this study is the C27945T mutation, which translates into the termination of ORF-8 after 17 amino acids, reveals that the SARS-CoV-2 can replicate without the intact ORF-8 protein. We found that the 97% of C27945T mutation of global occurrence, occurred in Europe and the USA derived samples. CONCLUSIONS: Two of the reported mutations (11085TTT insertion and C27945T nonsense), which seemed to reduce Type I interferon response are linked to specific geographical locations of the host and implicate region-specific mutations in the virus. The findings of this study signify that SARS-CoV-2 has the potential to adapt differently to different populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , Pandemics , Genome, Viral , Mutation , Phylogeny , Amino Acids/genetics
6.
Front Microbiol ; 13: 946549, 2022.
Article in English | MEDLINE | ID: covidwho-1993801

ABSTRACT

Chronically immunosuppressed patients infected with SARS-CoV-2 often experience prolonged virus shedding, and may pave the way to the emergence of mutations that render viral variants of concern (VOC) able to escape immune responses induced by natural infection or by vaccination. We report herein a SARS-CoV-2+ cancer patient from the beginning of the COVID-19 pandemic whose virus quasispecies across multiple timepoints carried several immune escape mutations found in more contemporary VOC, such as alpha, delta and omicron, that appeared to be selected for during infection. We hypothesize that immunosuppressed patients may represent the source of VOC seen throughout the COVID-19 pandemics.

7.
Virology ; 573: 96-110, 2022 08.
Article in English | MEDLINE | ID: covidwho-1895490

ABSTRACT

Non-Structural Protein 6 (NSP6) has a protecting role for SARS-CoV-2 replication by inhibiting the expansion of autophagosomes inside the cell. NSP6 is involved in the endoplasmic reticulum stress response by binding to Sigma receptor 1 (SR1). Nevertheless, NSP6 crystal structure is not solved yet. Therefore, NSP6 is considered a challenging target in Structure-Based Drug Discovery. Herein, we utilized the high quality NSP6 model built by AlphaFold in our study. Targeting a putative NSP6 binding site is believed to inhibit the SR1-NSP6 protein-protein interactions. Three databases were virtually screened, namely FDA-approved drugs (DrugBank), Northern African Natural Products Database (NANPDB) and South African Natural Compounds Database (SANCDB) with a total of 8158 compounds. Further validation for 9 candidates via molecular dynamics simulations for 100 ns recommended potential binders to the NSP6 binding site. The proposed candidates are recommended for biological testing to cease the rapidly growing pandemic.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Products/pharmacology , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
8.
Microb Genom ; 7(12)2021 12.
Article in English | MEDLINE | ID: covidwho-1555049

ABSTRACT

In this study, we performed genome-wide association analyses on SARS-CoV-2 genomes to identify genetic mutations associated with pre-symptomatic/asymptomatic COVID-19 cases. Various potential covariates and confounding factors of COVID-19 severity, including patient age, gender and country, as well as virus phylogenetic relatedness were adjusted for. In total, 3021 full-length genomes of SARS-CoV-2 generated from original clinical samples and whose patient status could be determined conclusively as either 'pre-symptomatic/asymptomatic' or 'symptomatic' were retrieved from the GISAID database. We found that the mutation 11 083G>T, located in the coding region of non-structural protein 6, is significantly associated with asymptomatic COVID-19. Patient age is positively correlated with symptomatic infection, while gender is not significantly correlated with the development of the disease. We also found that the effects of the mutation, patient age and gender do not vary significantly among countries, although each country appears to have varying baseline chances of COVID-19 symptom development.


Subject(s)
COVID-19/pathology , Genetic Variation/genetics , SARS-CoV-2/genetics , COVID-19/virology , Databases, Genetic , Female , Humans , Male , Odds Ratio , Open Reading Frames/genetics , Phylogeny , Risk Factors , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Severity of Illness Index
9.
Microb Pathog ; 161(Pt A): 105236, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1458672

ABSTRACT

The NSP6 protein of SARS-CoV-2 is a transmembrane protein, with some regions lying outside the membrane. Besides a brief role of NSP6 in autophagosome formation, this is not studied significantly. Also, there is no structural information available to date. Based on the prediction by TMHMM server for transmembrane prediction, it is found that the N-terminal residues (1-11), middle region residues (91-112), and C-terminal residues (231-290) lies outside the membrane. Molecular Dynamics (MD) simulations showed that NSP6 consists of helical structures. In contrast, the membrane outside lying region (91-112) showed partial helicity, which was further used as a model and obtained disordered type conformation during 1.5 µs. Additionally, a 200ns simulation study of residues 231-290 have shown significant conformational changes. As compared to helical and beta-sheet conformations in its structure model, the 200ns simulation resulted in the loss of beta-sheet structures while helical regions remained intact. Further, we have experimentally characterized the residue 91-112 by using reductionist approaches. CD spectroscopy suggests that the NSP6 (91-112) is disordered-like region in isolation, which gains helical conformation in different biological mimic environmental conditions. These studies can be helpful to study NSP6 (91-112) interactions with host proteins, where different protein conformations might play a significant role. The present study adds up more information about the NSP6 protein aspect, which could be exploited for its host protein interaction and pathogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Dynamics Simulation , Protein Conformation
10.
Brief Bioinform ; 22(2): 1106-1121, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343664

ABSTRACT

Whole genome analysis of SARS-CoV-2 is important to identify its genetic diversity. Moreover, accurate detection of SARS-CoV-2 is required for its correct diagnosis. To address these, first we have analysed publicly available 10 664 complete or near-complete SARS-CoV-2 genomes of 73 countries globally to find mutation points in the coding regions as substitution, deletion, insertion and single nucleotide polymorphism (SNP) globally and country wise. In this regard, multiple sequence alignment is performed in the presence of reference sequence from NCBI. Once the alignment is done, a consensus sequence is build to analyse each genomic sequence to identify the unique mutation points as substitutions, deletions, insertions and SNPs globally, thereby resulting in 7209, 11700, 119 and 53 such mutation points respectively. Second, in such categories, unique mutations for individual countries are determined with respect to other 72 countries. In case of India, unique 385, 867, 1 and 11 substitutions, deletions, insertions and SNPs are present in 566 SARS-CoV-2 genomes while 458, 1343, 8 and 52 mutation points in such categories are common with other countries. In majority (above 10%) of virus population, the most frequent and common mutation points between global excluding India and India are L37F, P323L, F506L, S507G, D614G and Q57H in NSP6, RdRp, Exon, Spike and ORF3a respectively. While for India, the other most frequent mutation points are T1198K, A97V, T315N and P13L in NSP3, RdRp, Spike and ORF8 respectively. These mutations are further visualised in protein structures and phylogenetic analysis has been done to show the diversity in virus genomes. Third, a web application is provided for searching mutation points globally and country wise. Finally, we have identified the potential conserved region as target that belongs to the coding region of ORF1ab, specifically to the NSP6 gene. Subsequently, we have provided the primers and probes using that conserved region so that it can be used for detecting SARS-CoV-2. Contact:indrajit@nitttrkol.ac.inSupplementary information: Supplementary data are available at http://www.nitttrkol.ac.in/indrajit/projects/COVID-Mutation-10K.


Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , Genome, Viral , SARS-CoV-2/genetics , Coronavirus Nucleocapsid Proteins/genetics , Humans , India , Mutation , Open Reading Frames , Polymorphism, Single Nucleotide , Sequence Alignment , Whole Genome Sequencing
11.
J Comput Biol ; 28(9): 909-921, 2021 09.
Article in English | MEDLINE | ID: covidwho-1286546

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the disease coronavirus-19 disease (COVID-19) has wreaked havoc on the health and economy of humanity. In addition, the disease is observed in domestic and wild animals. The disease has impacted directly and indirectly every corner of the planet. Currently, there are no effective therapies for the treatment of COVID-19. Vaccination to protect against COVID-19 started in December 2020. SARS-CoV-2 is an enveloped virus with a single-stranded RNA genome of 29.8 kb. More than two-thirds of the genome comprise Orf1ab encoding 16 nonstructural proteins (nsps) followed by mRNAs encoding structural proteins, spike (S), envelop (E), membrane (M), and nucleocapsid (N). These genes are interspaced with several accessory genes (open reading frames [Orfs] 3a, 3b, 6, 7a, 7b, 8, 9b, 9c, and 10). The functions of these proteins are of particular interest for understanding the pathogenesis of SARS-CoV-2. Several of the nsps (nsp3, nsp4, and nsp6) and Orf3a are transmembrane proteins involved in regulating the host immunity, modifying host cell organelles for viral replication and escape and hence considered drug targets. In this paper, we report mapping the transmembrane structure of the nsps of SARS-CoV-2.


Subject(s)
SARS-CoV-2/genetics , Viral Nonstructural Proteins/chemistry , Protein Conformation , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/genetics
12.
Mol Cell Biol ; 41(9): e0018521, 2021 08 24.
Article in English | MEDLINE | ID: covidwho-1268135

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic, responsible for millions of deaths globally. Even with effective vaccines, SARS-CoV-2 will likely maintain a hold in the human population through gaps in efficacy, percent vaccinated, and arising new strains. Therefore, understanding how SARS-CoV-2 causes widespread tissue damage and the development of targeted pharmacological treatments will be critical in fighting this virus and preparing for future outbreaks. Herein, we summarize the progress made thus far by using in vitro or in vivo models to investigate individual SARS-CoV-2 proteins and their pathogenic mechanisms. We have grouped the SARS-CoV-2 proteins into three categories: host entry, self-acting, and host interacting. This review focuses on the self-acting and host-interacting SARS-CoV-2 proteins and summarizes current knowledge on how these proteins promote virus replication and disrupt host systems, as well as drugs that target the virus and virus interacting host proteins. Encouragingly, many of these drugs are currently in clinical trials for the treatment of COVID-19. Future coronavirus outbreaks will most likely be caused by new virus strains that evade vaccine protection through mutations in entry proteins. Therefore, study of individual self-acting and host-interacting SARS-CoV-2 proteins for targeted therapeutic interventions is not only essential for fighting COVID-19 but also valuable against future coronavirus outbreaks.


Subject(s)
Antiviral Agents/pharmacology , Host-Pathogen Interactions/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Viral Proteins/metabolism , COVID-19 Vaccines/pharmacology , Drug Development , Humans , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Internalization , Virus Replication/drug effects , Virus Replication/physiology , COVID-19 Drug Treatment
13.
Biochim Biophys Acta Mol Basis Dis ; 1867(8): 166154, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1209165

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome-2 (SARS-CoV-2) exhibits a broad spectrum of clinical manifestations. Despite the fact that SARS-CoV-2 has slower evolutionary rate than other coronaviruses, different mutational hotspots have been identified along the SARS-CoV-2 genome. METHODS: We performed whole-genome high throughput sequencing on isolates from 50 Egyptian patients to see if the variation in clinical symptoms was related to mutations in the SARS-CoV-2 genome. Then, we investigated the relationship between the observed mutations and the clinical characteristics of the patients. RESULTS: Among the 36 most common mutations, we found two frameshift deletions linked to an increased risk of shortness of breath, a V6 deletion in the spike glycoprotein's signal peptide region linked to an increased risk of fever, longer fever duration and nasal congestion, and L3606-nsp6 deletion linked to a higher prevalence of cough and conjunctival congestion. S5398L nsp13-helicase was linked to an increased risk of fever duration and progression. The most common mutations (241, 3037, 14,408, and 23,403) were not linked to clinical variability. However, the E3909G-nsp7 variant was more common in children (2-13 years old) and was associated with a shorter duration of symptoms. The duration of fever was significantly reduced with E1363D-nsp3 and E3073A-nsp4. CONCLUSIONS: The most common mutations, D614G/spike-glycoprotein and P4715L/RNA-dependent-RNA-polymerase, were linked to transmissibility regardless of symptom variability. E3909G-nsp7 could explain why children recover so quickly. Nsp6-L3606fs, spike-glycoprotein-V6fs, and nsp13-S5398L variants may be linked to clinical symptom worsening. These variations related to host-virus interactions might open new therapeutic avenues for symptom relief and disease containment.


Subject(s)
COVID-19/virology , Mutation , SARS-CoV-2/genetics , Adolescent , Adult , COVID-19/epidemiology , COVID-19/pathology , Child , Child, Preschool , Egypt/epidemiology , Female , Frameshift Mutation , Genome, Viral , Humans , Male , Middle Aged , Sequence Deletion , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics , Young Adult
14.
J Mol Med (Berl) ; 98(12): 1659-1673, 2020 12.
Article in English | MEDLINE | ID: covidwho-784429

ABSTRACT

The outbreak of novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus continually led to infect a large population worldwide. SARS-CoV-2 utilizes its NSP6 and Orf9c proteins to interact with sigma receptors that are implicated in lipid remodeling and ER stress response, to infect cells. The drugs targeting the sigma receptors, sigma-1 and sigma-2, have emerged as effective candidates to reduce viral infectivity, and some of them are in clinical trials against COVID-19. The antipsychotic drug, haloperidol, exerts remarkable antiviral activity, but, at the same time, the sigma-1 benzomorphan agonist, dextromethorphan, showed pro-viral activity. To explore the potential mechanisms of biased binding and activity of the two drugs, haloperidol and dextromethorphan towards NSP6, we herein utilized molecular docking-based molecular dynamics simulation studies. Our extensive analysis of the protein-drug interactions, structural and conformational dynamics, residual frustrations, and molecular switches of NSP6-drug complexes indicates that dextromethorphan binding leads to structural destabilization and increase in conformational dynamics and energetic frustrations. On the other hand, the strong binding of haloperidol leads to minimal structural and dynamical perturbations to NSP6. Thus, the structural insights of stronger binding affinity and favorable molecular interactions of haloperidol towards viral NSP6 suggests that haloperidol can be potentially explored as a candidate drug against COVID-19. KEY MESSAGES: •Inhibitors of sigma receptors are considered as potent drugs against COVID-19. •Antipsychotic drug, haloperidol, binds strongly to NSP6 and induces the minimal changes in structure and dynamics of NSP6. •Dextromethorphan, agonist of sigma receptors, binding leads to overall destabilization of NSP6. •These two drugs bind with NSP6 differently and also induce differences in the structural and conformational changes that explain their different mechanisms of action. •Haloperidol can be explored as a candidate drug against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Nucleocapsid Proteins/chemistry , Dextromethorphan/chemistry , Haloperidol/chemistry , SARS-CoV-2/drug effects , Binding Sites/drug effects , COVID-19/virology , Computer Simulation , Coronavirus Nucleocapsid Proteins/genetics , Dextromethorphan/therapeutic use , Haloperidol/therapeutic use , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protein Binding/drug effects , Protein Interaction Domains and Motifs/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL